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Lecture 1

About Me

e Assistant Professor

e Signals are everywhere, waiting to be processed!
o Have worked with speech, music, and EEG signals

e Think, Capture, Analyze, Visualize, Create

e Also, enjoy:
o sports - badminton, swimming (beginner), popular science, world cinema ...

e Your instructor for three lectures!



Linear Algebra (LA)

e _nu al-fabr: The root word for “algebra”, thanks to a Persian Mathematician (Ref: wiki)

e Relates to solving a system of equations

e Whatis “linear” here?
o Limits the allowed operations
o Helps keep the chain of operations simple
o  Thus, makes math “easy”



Ingredients of LA

e Scalars: let’'s understand them

Can you give an estimate of Murali’'s
o Age

e Weight
e Height

co to ur: ShOrturl.at/AINOS (note the CAPS) Murali




Let’s get the data you filled in

e Download the CSV file
e Read CSV file into python - jupyter notebook

o Data cleaning - remove bad values
o Plot the data: We got 36 3-D data points

Age:

28
12

26
10

24

22

age
count

20

18

16

0 5 10 15 20 25 30 35
instance




Let’s get the data you filled in

e Download the CSV file
e Read CSV file into python - jupyter notebook

o Data cleaning - remove bad values
o Plot the data: We got 36 3-D data points
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Let’s get the data you filled in

e Download the CSV file
e Read CSV file into python - jupyter notebook

o Data cleaning - remove bad values
o Plot the data: We got 36 3-D data points
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(11 N Orm a I 7 h iStOg ra m . Distribution of Shoe Sizes
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e  For scalar data points (1-D)
e  Two parameters - mean and variance
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A lot of “natural” data has a
Normal distribution

° Why
° Central limit theorem (you
will learn later)
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“Normal” Distribution

e Key assumption:

o ldeally a 1-D data should be normally distributed
o Something happens (a process/transformation)

o Mean shifts, Variance scales

) . ) ) ) o Can this assumption be generalized to higher
Mean and variance normalization or standardization of X dimensions
) Linear Algebra helps model the transformation
as “linear” for N-dimensional data points




“Normal” Distribution

e Things are normal

e Something happens (a process/transformation)

e Mean shifts, Variance scales

Normalization

e Make zero mean, and unit variance

e Or, mean and variance are features of a scalar



Ingredients of LA ...

Scalars

Vectors

Matrices

Tensors

going beyond scalars

A computer science view

: . 1 2 _1 2_ _3 2_
2 $ 4 Bmme T mniF 2mes)
Scalar Vector Matrix Tensor

Source: Harshit Tyagi, Towards Data Science blog post illustration (link)



https://towardsdatascience.com/introduction-to-vectors-and-matrices-using-python-for-data-science-e836e014eb12

Ingredients of LA ... going beyond scalars A physics view

e Scalars
e \ectors
e Matrices
e Tensors

Source: Frontiers in Astronomy and Space Sciences



Ingredients of LA A physicist view

e Scalars
e \ectors
e Matrices
e Tensors

Source: Frontiers in Astronomy and Space Sciences



Ingredients of LA A physicist view

e Scalars
A
e \/ectors o
e Matrices >
e J[ensors

Source: Frontiers in Astronomy and Space Sciences



Vectors

e Direction
e Magnitude A

Source: Frontiers in Astronomy and Space Sciences



Vectors

e Length

e Direction

e Addition

e Subtraction

e Dot product

e Span

e Linearly independent

e Basis

Jupyter notebook

-
-
>

-2.00

® -0

3
vvvvvv




Ve Cto ) Given ‘X1’ you have some idea about ‘x2’

Given x1’ you have no idea about ‘x2’
Correlation in 2-D

x1

L. " 'I' " : ".' ¢ '. -: “/ ‘A'J. - ‘2,!.. - _-v y - .n"
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Source: Peter Bloem https://peterbloem.nl/blog/pca-2



Matrix

Vector
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Source: Adapted from Peter Bloem https://peterbloem.nl/blog/pca-2



Put more
vectors together



Put more
vectors together 88 .8 * e o o
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Image Matrix is a collection of vectors!

.......




Scaling an image — a transformation

Source: Peter Bloem https://peterbloem.nl/blog/pca-2



Summary
e C(Collected some data

e Plotted it
e Understood a data view of scalar, vector, matrix

Tomorrow

e Principal Component Analysis



Lecture 2

Linear relations

200 |
190 1 e o
180 -

170 - o %

height
D

1501

140 1

130 1

40 50 60 70 80
weight



Linear relations

o Why?
o “Looks” linear

o May be easy to do

o We know how to do
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Linear relations

200 4
190 1
e How to do?
o  Write a linear relation or transformation 180 -
o Estimate the parameter
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Linear relations

200
190
e How todo?
o  Write a linear relation or transformation 180 -
o Estimate the parameter
170 1
m Test the accuracy =
o
o 160
_ _ 150 1
Welcome to One-dimensional PCA!
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Principal Component Analysis (PCA)

e Take 2-D data points
e Project to 1-D space (Encoding)
e Reconstruct back the 2-D data (Decoding)

e Goal:

o The “error” between original and reconstructed data should be minimum

m Mean Square Error
o Subject to a few additional constraints on the encoding and decoding vectors

m Encoding and Decoding vectors are related

Discuss on board



PCA: on our dataset
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PCA: on MNIST Digit dataset

Do in Jupyter Notebook

Original digits Reconstructed with 10 PCs




Let’s recap with an animation

https://setosa.io/ev/principal-component-analysis/
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PCA: On Face images

e How does an “average” face look like?
e Are there some common features across
faces?
o Can we learn them mathematically?
e Can we reconstruct any face from these

features?




PCA: On Face image dataset

5.6.1. The Olivetti faces dataset

This dataset contains a set of face images taken between April 1992 and April 1994 at AT&T Laboratories Cambridge. The
sklearn.datasets.fetch_olivetti_faces function is the data fetching / caching function that downloads the data archive

from AT&T.

As described on the original website:

There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken at
different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial
details (glasses / no glasses). All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position (with tolerance for some side movement).

The image is quantized to 256 grey levels and stored as unsigned 8-bit integers; the loader will convert these to floating
point values on the interval [0, 1], which are easier to work with for many algorithms.

Courtesy: Scikit-learn



6 Eigenvectors or, Eigenfaces

Do you notice some face-like
attributes!

e Note we have plotted
eigenvectors as images by
reshaping.
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Let’s go to Jupyter notebook

Original faces Reconstructed with 50 PCs




PCA: On Noisy face images

Denoising using a few of PCs for reconstruction
Let’'s go to Jupyter notebook

Original faces
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Summary

e Ingredient of LA
o scalars, vectors, matrices
o Visualization and physical interpretation

o Creating our own small dataset using responses from google form

e Correlations, Covariance matrix, and eigenvectors
e Principal Component Analysis (PCA)

o Our own mini height-weight dataset
o MNIST digit dataset

o Olivetti Face image dataset

o De-noising using PCA



Some resources

e Visualizing linear algebra
o Video lectures by Grant Sanderson: https://www.3blue1brown.com/topics/linear-algebra

e PCA

o  Tutorial by Peter Bloem: https:/peterbloem.nl/blog/pca-2
o Book: Chap 12 in Pattern Recognition and Machine Learning, Christopher Bishop
m  https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recogn
ition-and-Machine-Learning-2006.pdf

e Jupyter notebooks

o MNIST digit PCA:
= https://colab.research.google.com/drive/1QikThSrnmQi9jLkvQ721zKeu5ILIWKZI?usp=sharing

o Face Images PCA:
n https://colab.research.google.com/drive/15nD-sv_rYYxBbcPXulL SIAyUy7P-WF 1DO?usp=sharing



https://www.3blue1brown.com/topics/linear-algebra
https://peterbloem.nl/blog/pca-2
https://colab.research.google.com/drive/1QjkThSrnmQi9jLkvQ721zKeu5ILIWKZI?usp=sharing
https://colab.research.google.com/drive/15nD-sv_rYYxBbcPXuLSlAyUy7P-WF1DO?usp=sharing

